Reqular Expressions
for
Technical Writers
(tutorial)

Introduction

' Scott Prentice, President of Leximation, Inc.

' Specializing in FrameMaker plugin development as well as
structured FrameMaker conversions, consulting, and
development. FrameMaker user/developer since 1991.

——— Developed DITA-FMx, a FrameMaker plugin for efficient

DITA authoring and publishing.

——— (onsulting for custom Help systems, creative/functional

web applications, and EPUB solutions.

—— This information is not exhaustive or complete

' Discuss regex features that may be most useful to
technical writers

' Designed for beginners or infrequent regex users

(However, some advanced topics are discussed)

Audience parficipation

— Yes!

—— Please ask questions when they come up

—— Think of tasks you're faced with that might be solved
with regular expressions

—— I'll ask for those tasks in the Demo portion

Regular expression?

——1 Regular expression, AKA “regex”

——— Text string describing a search pattern
——— Way beyond wildcards

—— May also define a replacement string

—— Replacement may contain content extracted from match

Where can you use a regex?

—— Many authoring tools provide regex support

—— Most “serious” text editors
——— Scripting languages like Perl, PHP. JavaScript, Python, Ruby

——— Unix ufilities like grep, sed, and awk

—— (Compiled programming languages like Java, G#, VB.NET

—— Anything with a “regex engine”!

—— Powerful searching
—— Complex string replacements

—— Intelligent modifications

—— Text format conversions (this is huge)

— HTML or XML to CSV (or the other way around)
— HTML or XML cleanup

But, better than wildcards?

——— Yes. Much better.

——— Wildcard search/replace is fine for simple patterns

——1 Regex s like a mini programming language

——— Powerful syntax in very few characters

Problems?

——1 (Can appear very complex and overwhelming

——1 Regex syntax varies based on the “engine” and
implementation

——— Watch out for “greedy” matches

—— Typically no “one right way” to do the same thing

——— Some people say you shouldn’t parse XML with o
regex; as long as you understand the limitations it's fine

—— Lliteral characters — z, zorch, FOO, FOO

—— Metacharacters — \'s, \'S, \w, \W, \d, \D

' Anchors/boundaries — A, $, \b, \B

— Quantifiers— * +, 2, {2}, {3,5}, {3,}

Modifiers

——— Common modifiers (opfions) in many tools

— g -global replace

— - case insensitive match

— m - multiline mode (treats each line separately)

— s-single-line mode (“dot matches all”, includes \ r\n)
— X - free-spacing mode (comments follow “#”)

——— Inline use: (2dimsx) enables, (?-imsx) disables

Basic regex examples

—— Find the word .. “cat” (lowercase) — \bcat\b

——— .. "cat” or “dog” (lowercase) — \b (cat|dog)\b
——— . "Cat" or “cat” — \b[Cc]at\b
—— .. "cat” followed by numbers — \bcat[0-9]+\b

—— . that contains “cat” — \Bcat\B

— . that starts with “cat” — \b[Cc]at\B

Backreferences / captures

—— Backreferences match on an earlier group:
class=([""']).+2\1

——— Capture group uses confent of matched group in
replacement

—— Tools use \ 1 or $1 to indicate captured string

—— To get “number” count open parens from start (except
non-capturing groups)

Date regex examples

—— Match date in the form of yyyy-mm-dd or yyyy/mm/dd —
\b\d{4}[/-1\d\d[/-1\d\d\b ..or
\b\d{4}([/-1\d\d?){2}\b ..

——— (Change the format of that date string to mm/dd /yyyy —
m: \b(\d{4})[/-1(\d\d)[/-]1(\d\d)\b
I1$2/9$3/%1

Naturally “greedy”

—— Regexes will typically match on as much as possible

——— Need to add code for minimal match
——1 Match any char except “>" - [A>]+

——— Use ? for a minimal match- this .*? that

—— Use multiline mode (if possible) (zm)

HTML/XML regex examples

—— Exiract tag name to $1 —
<([\w-]1+)[*>]*>

——— Extract @class aftribute value to $1 —
<[\w-1+[A>]*

class\s?2=\s?"([A"]+)"[A>]*>

—— Extract confent from tag to $2 —
<([\w=]+)[2A>]*>(.+)2</\1>

—1 Basic regex examples

—— Date regex examples
——— HIML/XML matching

——— Questions?

Where to stari?

—— Start simple, really simple . get used to your editor

——1 Match on some literal characters
——1 Match on string of a specific length

—— Try extracting and replacing portions of strings

——1 Use a text editor and match on some code, HTML, CSV, or
whatever you're likely to encounter

Tool-specific issues

———1 Adobe FrameMaker
—— Adobe RoboHelp
—— Microsoft Word
——— MadCap Flare
—— Oxygen XML

——| Text editors and scripting languages

General differences

—— Text/code editors are line-based

———1 Authoring tools are paragraph-oriented
—— Default may be single-line or multiline mode

——1 Not all modifiers are available in all tools (try inline)

—— Use $1 or \ 1 format for capture replacement match?

—— Tool may or may not support backreferences

FrameMaker (unstructured)

" Enable single-line mode with inline modifier (2s)

" Match: \n for EOL, \ x@9 for line break (not \ r),
\t or \x08 for tab

" Replace: \ r or \x09 for line break, \ x08 for tab

 Use $1 format for captured replacement value

FrameMaker (structured)

" No single-line mode; inline modifiers not supported

" Each node defines a “line” (match cannot span nodes)
" Use \ n fo match EOL (but that's all it'll match)

' Use $1 format for captured replacement value

' In XML View, use “Complex Expressions” opfion
(limited features)

FrameMaker

Untitled1.fm X
IO L | L 1 | 2 | 3 | 4 | 5 | 6 | 7 hd 8

T
. 11s 1s a test that explains that thing¥
- this is a test that explains that thing¥
] this is a test that explains that thing¥
this is a test that explains that thing ‘
> | this is a test that explains that thing¥ e
- this is a test that explains that thing¥ Find [Tm: ,]
| this is a test that explains that thing¥ -
this is a test that explains that thing¥ i M
1 § (") Simple Search || Consider Case
] : (") Wildcards Whole Word
] @ Regular Expressions Find Backward
] Change [To Text: v
] $1 v
2] Clone Case
] Lookin: Book Map (@ Document (") Selection
| £ Find g [Change] [Change & Flnd] [Change Al]

l

RoboHelp

' Single-line mode is default in design view

" Multiline mode is default in source code view
' Inline modifiers not allowed, no capture group replacements

 Uses “Microsoft-style” regular expressions (??)

" Newline (\ n) only matches in code view

' Supports find/replace in files

RoboHelp

[starter x = Topic List X D Chapterl X D Chapter2 X [}Chapterl.htm X v X Find and Replace v X
| Design £ HTML ,
esign = ,ﬁ—lﬁnd —
Document » —
a - Find: Show Advanced Filters (g)
C(|) L T T T R S S T R S S S S S T SRR SRS S T NN SRR - D 8 —
. this " test v
AChapter One “ | Lookin:
I8 <Curmrent Window >[Editor:Chapter1] v

(2) Hide Options

Files of Type: Text file types (“htm ; “html ; “t

[Match Case ["] Find in Source Code
simple content. This is a basic test of simple content. This is a basic test of simple content. This is a 2 Match Whole Word - [¥] Use: | Regular Express v |
. e a0 ST LT RSN E R 8 of simple content. For more information see Direction:
“Chapter Two™ on page 3.
* Bullet item one [Find Next] [Find All]

* Bullet item two
Second paragraph in bullet item two g
* Bullet item three

This is more simple content. This is more simple content. This is more simple content. This is more
simple content. This is more simple content. This is more simple content.

MS Word

——1 Special MS hybrid regex/wildcard syntax; not “real”

—— The * matches anything except EOL (non-greedy),
and @ after a char or char class matches one or more

—— Use 213 o find a paragraph mark and replace with Ap
(replacing with 213 can be bad)

—— Find duplicate paras — (*213)\1

—— Find duplicate “words” — (<[a-zA-Z0-9]@>) \1

Home

Page 1 of 1

MS Word

Insert

30 of 385 Words

Design

v abe X X v A

Layout References Mailings Review

A~ A v —AMEE=

>

how well it works. This is a test to se;
This is a test to see how well it works
how well it works. This is a test to sel

This is a test to see how well it works
how well it works. This is a test to se
This is a test to see how well it works
how well it works. This is a test to se

Here's another para that's short and
Here's another para that's short and
Here's another para that's short and
Here's another para that's short and
Here's another para that's short and

Here's another para that's short and

Find and Replace Document
m Replace Go To
Find what: ' (<[a-zA-Z)@>) \1 -
Options: Search Down, Use Wildcards
Highlight all items found in: Current Selection
A close (IR

Search
Current Document All [T}
Use wildcards
Sounds like
Find all word forms
Find
Format g

Here's another para that's short and .m!__mm..g_?

Para with dup dup words words to test test. Para with dup dup wo
with dup dup words words to test test. Para with dup dup words w

dup dup words words to test test.

0¥ English (US)

Any Character
Character in Range
Beginning of Word
End of Word
Expression

Not

Num Occurrences
Previous 1 or More
0 or More Characters
Tab Character
Comment Mark
Caret Character
Column Break

Em Dash

En Dash

E. Para

with
Manual Line Break

Page / Section Break
Nonbreaking Hyphen
Nonbreaking Space

Optional Hyphen + 173%

—— Best to use regexes in code view, seems unreliable in XML
Editor view (search is done on underlying code)

——— No single-line mode; inline modifiers not supported

—— Use \ 1 format for captured replacement value

——— Supports find/replace in files

= chaptertwo.htm v 0 x

[About Master Pages X Default.flpgl* X Styles.css* x ¥ MasterPage.fimsp X 3 chaptertwo.htm %

B & 97

1 <?xml version="1.0" encoding="utf-8"2> <(h\d) class="concepttitle"([*:(1 of 1) v | € —}E A X A
2 <html xmlns:MadCap="http://www.madcapsoftware.com/Schemas —
3 <head><title>Chapter Two</title> <\1 class="ctitle"\2> Whole word
< <link href="testmap.css” rel="stylesheet" /> Matchicace
= o - = 1 </head>
=Jiadand Beplacein Fles _ <body class="conbody"> z Regular Expressions
Find: <hl class="concepttitle"”>Chapter Two</hl> Wildcards
<(h\d) class="concepttitle"([*>])> - <p>This is a basic test of simple content. This is a basic

test of simple content. This is a basic test of simple content.) Eeriapnesln =

ReP[acew'tih:. This is a basic test of simple content. This is a basic test of
<\1 class="ctitle"\2> N simple content. This is a basic test of simple content. This is
Find in: a basic test of simple content. For more information see <MadCap:xref href="chapterone.htm#id59ddc45@-81
:

(whole project) v <1li>
File types: '<p>Bullet item one</p>
Topics v </:!‘l>

@Find Options <p>Bullet item two</p>

<p>Second paragraph in bullet item two</p>
[] Match case </1i>
[] Whole word <1i>
Find in source code <p>Bullet item three</p>
Search type: </1li>
Regular Expressions ™ <ful>
' <p>This is more simple content. This is more simple content. This
@ReSU”OP"'W‘S is more simple content. This is more simple content. This is more
[Find Next l simple content. This is more simple content. </p>
<div class="fig">

I Find Previous] <p>
| Skip File] <img src="images/Yosemite_Meadow.jpg" style="text-align: left; width: 479; height: 32e;"
| Find Al |
I Replace |

Replace All

OxygenXML

—— Enable single-line mode with “dot matches all” option

——— Use \1 format for captured replacement value

—— Supports find/replace in files

OxygenXML

o UntitledLhtml* X 4 b B Attributes
htmi body p p [http:/ /www.w3.0org/ 1999 /xhtml] b
1 <!DOCTYPE html SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional .dtd"> W| Actribute L
2 v <html » "http://www.w3.0rg/1999/xhtml"> fLjjclass Jest
3% <head>
4 <title>test</title> Find: C) Find
5 </head> \wH(D> . .
6~ <body> - Replace
7 <hl>chapter one</hl>
8+ <p class="test">this is a test to see how
9 a test to see how well it works. this is Replace with: Q. Find All
10 to see how well it works. this is a test
11 how well it works. this is a test to see Replace All
12 well it works. this is a test to see how
13 it works. this is a test to see how well ypath: Type XPath expression v o= Repiace to End
14 works. </p>
15+ <p>this is a test to see how well it works. DieTan Scope
16 a test to see how well it works. this is
17 to see how well it works. this is a test * Forward o All
18 how well it works. this is a test to see Backward Only selected lines
19 well it works. this is a test to see how
20 it works. this is a test to see how well guions
21 works. </p>
22+ <p>this is a test to see how well it works. Case sensitive Whole words only
23 a test to see how well it works. this 1is Incremental v| Regular expression
24 to see how well it works. this is a test 7] Wrap around BaAmec el
25 how well it works. this is a test to see Il
26 well it works. this is a test to see how
27 it works. this is a test to see how well Enable XML search options >> Close
28 works. </p>
29 </body> I] cite
30 </html> s code
< del

- rfn
Grid Author /4, Transfo.. Entities ¢x> Elements

TextWrangler

—— (Choose “grep” option to perform regex search/replace

—— Enable single-line mode with inline modifier (2s)

—— Use \ 1 format for captured replacement value

——— Supports find /replace in files

TextWrangler

(New Document)

untitled text

Thls iS a test to see h0w well B (\d{4})‘(\d{l,Z})-(\d{l,Z})

a test to see how well it work: g - Previous
to see how well it works. This -

how well it works. This is a t¢ Find Al
it works.

This is a test to see how well Replace: 5 n\3,\1 Replace
a test to see how well it works _
to see how well it works. This ads iy
how well it works. This is a t¢

it works.

This is a test to see how well Matching: Case sensitive Entire word (V| Grep
a test to see how well it work:
to see how well it works. This
how well it works. This is a t¢
it works.

Here's another para that's short and sweet. Some date 2016-1-3.

Here's another para that's short and sweet. Some date 2016-2-12.

Here's another para that's short and sweet. Some date 2016-12-31.

Here's another para that's short and sweet. Some date 2016-12-31.

Here's another para that's short and sweet. Some date 2016-12-31.

Here's another para that's short and sweet. Some date 2016-12-31.

Here's another para that's short and sweet. Some date 2016-12-31.

Para with dup dup words words to test test. Para with dup dup words words to test test.
Para with dup dup words words to test test. Para with dup dup words words to test test.
Para with dup dup words words to test test.

Search in: Selected text only v| Wrap around

Scripting with regexes

—— Many languages provide regex modules

——1 Perform batch processing

——— Easily repeat complex processing

——1 Perl and JavaScript are common

——— Tightly integrated into language

——— Great for quick batch processing scripts

—— Platform independent

——— Find: if ($str =~ m/\bcat\b/i) {..}

— Repluce $str' =~ S/\bcat\b/dog/g;

—— Processing of HTML forms or other data

—— search() - returns the position of the match (-1 if none}
var str = "Welcome to tcWorld";

var pos = str.search(/tcworld/1);

1 replace() - returns the new value
var ret = str.replace(/tcworld/ig,

"Stuttgart");

ExtendScript

—— Scripting language in FrameMaker and RohoHelp

—— Strip the full path and file name down to just the “name”
var doc = app.ActiveDoc;
var filename = doc.Name.replace

(/2. *2([M\\I+)\.fm$ /1, "$1")3

Regexes at the command line

—— grep, sed, and awk are Unix ufilities (Windows too)

——— Often used fogether; pass output from one to another

——— Can be used in shell scripts

—— Wikipedia is a good place to start for more information on
these utilities

—— grep = Global Regular Expression Print

——1 Searches for regex matches in files (each line) or input

——— Only scans each line, so not great for *ML files

—— Lists all DITA “task” files (recursive from “here”)
grep -rl "<task" *

—— Prints lines from CSV file with the specified pattern
grep "\d{3}-[a-z]{4}" modes.csv

—— sed = Stream EDitor

———1 One of the earliest fools o support regexes (1973}

—— Line oriented matching or subsfitution

1 Replace cat with dog in file
sed -ie 's/\bcat\b/dog/g' file.txt

awk

" awk = surnames of creators (Aho, Weinberger, Kernighan)

" Programming language for processing fext files
' Series of condition and action pairs

' Each line in texi file is a “record” broken up into “fields”

' If condition matches in a line, the action is performed

' Fields are separated by whitespace, or as specified

awk

——— Print the lines that contain cat or Cat
awk '/\b[Cc]at\b/ {print $0}'
dogs.txt

——1 Scan tab-delimited file for a name and print the first field

from each “record”
awk 'BEGIN {FS="\t"} /[Jj]ohn/
{print $1}' datafile.txt

' Simple Perl regex examples

' JavaScript regex examples
' grep, sed, awk examples

' Audience task examples?

—— Questions?

Resources

—— RexEgg — www.rexegg.com

—— Regular-Expressions.info — www.regular-expressions.info

1 Mastering Regular Expressions — 0'Reilly

——— Sample files — www.leximation.com/downloads/regex-samples

1 Scott Prentice <scott AT leximation.com> — www.leximation.com

Feedback

(3] 5 e (1]

S th R cod
H - | .I ﬁ o(:r'a \rl'isitetl?e l;:I(;L:a
n_uly T I..| http://ta | 7.honestly.de
H N
o=
r B

Your opinion is important!

Please tell us what you thought of the
lecture.VVe look forward to your
feedback via smartphone or tablet.

The feedback tool will be available
even after the conference!

